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ANALYTIC SOLUTIONS FOR THE PROBLEM OF CONDENSATION OF A TWO-COMPONENT 

GAS MIXTURE 

A. K. Zhebrovskii and M. K. Trubetskov UDC 536.48 

For describing the process of condensation of a two-component gas mixture on a 
cryopanel, a mathematical model is proposed, for which analytic solutions are 
obtained under various proposed simplifications. Numerically computed solutions 
are compared with experimental results. 

I. Investigations of the process of condensation of a two-component gas mixture into 
the liquid phase have been made in a series of studies [1-5]. Experimental studies have, 
for example, been described in [i, 3, 4]. Based on these, the qualitative behavior of the 
system has been studied and empirical formulae proposed. 

In [2], a study was made of gravity-flow film condensation, in which the liquid conden- 
sate flowed down an inclined cooled surface and was removed from the system. This enables 
a study to be made of the steady-state working of such a system, and the construction of a 
self-modeling or numerical solution of the boundary value problem. In [5], a similar problem 
is considered on the basis of correlations deriving from the conservation laws. The solu- 
tion is less accurate, but the basic qualitative rules can be traced from it. In these in- 
vestigations, however, a steady-state process was studied, in which the concentration field, 
temperature and other parameters of the boundary layer were time independent. In practice, 
on the cryopanels of cryogenic condensation pumps, cooled to 15-17 K, there is formed during 
the condensation of gas mixtures a liquid film precipitating on the cryodeposit. The layer 
of condensate grows continuously, which brings about an important change with time in the 
remaining characteristics of the system. Therefore, it is necessary to construct a nonsta- 
tionary model for describing the process. 

2. The construction of a mathematical model of such a process, describing its dynamics 
for a wide range of input parameters (system pressure, temperature head, overall running time 
of the process), must in its implementation take into consideration free convection in the 
gaseous region [2]. If, however, the temperature head in the system (temperature difference 
between that of the gas far removed from the cryopanel T= and that of the cryopanel Tp is 
sufficiently great then the contribution from free convection may be neglected, and we can 
limit ourselves to a spatially uniform model. 

For describing the processes of heat and mass transport in the gaseous region, we take 
a system of coordinates, the origin of which coincides with the boundary of the phase inter- 
face (Oy-axis in Fig. i). Although such a system is not static (h(T) being the law of motion 
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4) two-component  gas .  

of the phase interface boundary as a function of time), this may be neglected, since obvi- 

ously the velocity of this system l~i<<]u!, where v is the velocity of the gas. As will be 

dh 
seen later, the relationship between -- and v is described by the ratio of the densities of 

d~ 
gas and condensate, these differing by several orders of magnitude. We note that in the 
case of condensation of a freon mixture, the density ratio in the worst case may reach 0.05. 
If necessary, the motion of the coordinate system may be taken into account with the intro- 
duction in the gaseous region of an additional convective term. 

The growth of the condensate layer is slower than the transfer processes established 
in the gaseous region. Therefore, in describing heat and mass transfer in the gaseous region 
we shall limit ourselves to steady state equations: 

uTv,g---- agTygg y ~ 0; vW!j.g---- DW~ug, zj > 0; 

The solution of equations (i), if v < 0 (the gas is moving in the direction of the cryo- 

panel) is: 

Tg ( t j )= T= - -  (T= - -  Tb,g) eX p - ~ ]  y , (2) 

In Eqs. (2) and (3), there is a nonexplicit time dependence; the values v, Tb,g, Wb,g, 
generally speaking depend on T. 

Let us consider the question of the boundary conditions on the moving phase boundary. 
Convective and diffusive flows (of the first and second gas components) towards the conden- 
sate (negative direction of axis Oy) are such that [6]: 

Jl.~onv= --pgW~=oV, J2 cony = --pg(l -- Wgly=0 ) v, 
(4) 

h,dife=pg D d W g  . OWg 

From which it follows that the total flow of matter in the direction of the condensate is 
j = -pgV, and the law of conservation of matter at the phase interface boundary takes the 

form Ogdh = jdT, or dh pg 

d~ ~ (5) 
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The law of preservation of the first component may be written in the form PcWcdh = 
(Jl,conv + Jl,diff) dT, which, from (4) and (5) gives the equation 

(Wb,g - - W b , ~ v  = D dWg (6) 
" dy y=o" 

We note that the law of conservation of the second component is fulfilled automatically, being 
a consequence of (5) and (6). 

Let us write the law of conservation of heat energy, Let Xg and Cg be respectively the 
thermal capacity of the two-component gas mixture. These, we shall consider to be indepen- 
dent of temperature. Then the heat flow to the condensate on the phase interface boundary 
is 

= ~ OTg 
qg - -  %~176 + "g--O-y-y v=o" (7) 

If qc is the heat flow in the condensate in the direction of the cryopanel on the phase 
interface boundary, then the law of conservation of heat energy yields the equation 

dh 
qg - q.~ = ~ (%%% - r ~ ) .  ( 8 )  

The RHS of this equation denotes the quantity of heat in the volume of matter condensed in 
time dT, and the quantity of heat given out on account of the phase transition. We can 
transform (8), by taking account of (6) and (5), to the form 

OTg 
~g Oy v=o - q c = - p ~ [ ( c c ' - - ~ ) T b  --r].  (9) 

S t i l l  one more c o n d i t i o n  a t  the  phase i n t e r f a c e  boundary i s  ob ta ined  from the  following 
considerations. We shall reckon that for each moment of time T, matter on the phase inter- 
face boundary is in a state of thermodynamic equilibrium (quasi-static process), and the com- 
positions of the gas and condensate on the phase interface boundary (Wb,g , Wb,c) , are deter- 
mined by the conditions of the phase equilibrium by the value Tb: 

Wb,r =/~(Tb),  Wbtg=[2(Tb) .  (10) 

A typical form of the functions f~1 and f~z inverse to the above is given in [2]. 

Let us compare the form of solution (3) for Wg(y) and condition (6). After substituting 
(3) in (6), remembering that v ~ 0, we get the result 

Wb, c = W ~ ,  (11) 

which means that, with the assumption made, there occurs so-called full condensation, in 
which the composition of the condensate is the same as that of the gas distant from the cryo- 
panel. 

In [2] it has been shown how the tempe[ature of the phase interface boundary T b and the 
value Wb,g are determined by W~. Analytically, this problem reduced to a solution of the 
equation W~ = f1(Tb)=~Tb, and, further, to computing Wb, c = f2(Tb). Therefore, in the frame- 
work of the model, T b and Wb,g are independent of time, and are determined by the initial 
data. 

The process of heat diffusion in the condensate is described by the boundary-value 
problem for the thermal conductivity equation with constant coefficients 

T~,c = ac:Tzxe, T > 0 ,  0 < x < h ~ ) ,  ( 1 2 )  

TG= 0 = Tp ~ ~=h~ = % ,  ~ It=0 = ro,r (x), 0 < x < h (0). 

where, from Fig. I, the point x = 0 of axis Ox coincides with the surface of the cryopanel, 
at temperature,Tp. The heat flow in the condensate qc, appearing in (8) is expressed in 
terms of the field Tc: 

= ~, 3Tc I 
qc c c)x Ix=h<~l" 

(13)  
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Equations (2), (7) and (5) enable us to transform (8) to the following from (noting 

zgl i): that ag = 
I 

% OTc I dh 
---~x ]x__h(~) = Pc ~ [r .4.-CgT~ --CgTb]. (14)  

T h e r e f o r e ,  w i t h  t h e  a s s u m p t i o n s  made, t h e  p rob lem r e d u c e d  t o  s o l v i n g  Eqs .  (12)  and (14 )  
in  which t h e r e  i s  a moving b o u n d a r y .  

3. L e t  us make in  Eqs .  ( 1 2 ) ,  (14)  a change  o f  v a r i a b l e s  ~ = x / h ( x ) ,  o f t e n  u s ed  
in  p rob l e m s  w i t h  moving b o u n d a r i e s .  Then we g e t  

( = : 
a-c PcCc 

ac ~ dh T~e "r,>O, 0 < q < l ,  (15a )  
T , , ~ -  h(,)  '%"' ~+ h(,) a~- ' 

rc!n= o = rp,,, T c In=l = Tb ,  ( t S b )  

%c dh 
h (~) Tn'cln=' = Pc ~ [r § cgToo -= C T b ] ,  (15c )  

Tcl~> o = To(h(0)r  1, 0 < ' q <  1. (15d)  

I f  h ( 0 )  = 0 t h e n  t h e  i n i t i a l  c o n d i t i o n  (15d)  becomes s u p e r f l u o u s .  

We s h a l l  n e g l e c t  t h e  i n f l u e n c e  o f  t h e  s p e c i f i c  t h e r m a l  c a p a c i t y  o f  t h e  c o n d e n s a t e  in  
t h e  new s y s t e m  o f  c o o r d i n a t e s ,  a ssuming  t h a t  t h e  change  o f  f i e l d  T c in  i t  w i t h  t i m e  i s  s u f -  
f i c i e n t l y  s low.  Th i s  means t h a t  TT, c -- 0 in  ( 1 5 a ) ,  and i t s  s o l u t i o n  w i t h  c o n d i t i o n  (15b)  
has  t h e  form 

= f exp ~ dE -{- Tp. Tc (% "0 i z 2a c 
I exp ( _ _ _  $2) d~ 
0 2ac ~ o 

(16)  

Equation (16) gives the dependence of the solution Tc(D, ~) on the mode of boundary 

movement and on time, since here z = h ~. Substituting this expression in the remaining 
d~ 

condition (15c), and making simple transformations, we can write: 

pexp - - - -  = z j ' e x p  ~2 dL p = - -  (17)  
2ac o 2ac 9 c [r + ~T| - -  %Tb, ] 

In gqs. (17), the dependence of the variable on time is present only in parametric from 

z = h~- therefore, (17) is the transcendental equation for determining the root z = z 0 = 
dT' 

const, and the function h = h(T) is found by solving the Cauchy problem: 

h dh d---~-=Zo, hl~=o=h(O)=ho. (18)  

In  t h e  c a s e  h 0 = O, which  w i l l  be c o n s i d e r e d  be low,  t h e  s o l u t i o n  o f  (18)  i s :  

h (~) = V ~ .  (19)  

We can transform Eq. (17), making a change of variables: 

err (s), 

4. 

V[~ V 7  . B~ = se" V-~ (2o)  

2 
i e-~"d~' the probability integral [ 7 ]. where err(s) ~-i ]/~ 0 

Clearly, the transcendental equation (20) has a single root s = s o , since the RHS of 
the third equation (20) is continuous and grows monotonically, tending to zero at s = 0, and 
tending to ~ at s § 0. This root is easily found graphically, or by using a suitable numeri- 

cal method. 
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Fig. 2. Schematic of the installation used for conden- 
sation of the two-component gas: i) tank with gas mix- 
ture; 2) condensation pump; 3) reservoir; 4) valve; 5) 
flowmeter; 6) cryopanel; 7) thickness gauge; 8) pressure 
gauge; 9) observation window; i0) nitrogen heat exchanger. 
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Fig. 3. Time dependence of the thickness of the cryo- 
precipitate (curves are theoretical; points are experi- 
mental): i) pg = 3990 Pa, 2) 2660 Pa, 3) 1330 Pa. h-103 in 
meters, �9 in sec. 

For small B values, however, we can get an expression for s D = s0(B) in the form of an 
exponential power series. Substituting in (20) the expression erf(s) from [7], Eq. 
7.1.6, and after simplification, we get 

n ~  9n82 n 

B~ = s ~ E - ( 2 1 )  
~ o  ( 2 n +  i)!! 

To Eq. (21) can be applied the theorem for the expansion of the roots of a transcenden- 
tal equation [8], p. 49, from which it follows that there exists a B 0 > 0 such that in the 
circle IBI < 0, the function s0(B) has two simple holomorphic branches. Using the method 
of undetermined coefficients, we can find any section of the exponential power series for 
each of them. We are interested in that branch which for real B > 0 gives real s = so > 0. 

The first four terms of the exponential power series of that branch are: 

B 3 23 I57 
So = B - -  - -  + - -  B 5 - - -  B 7 + O(B"), Zo = 2aes~. ( 2 2 )  

3 90 630 

This representation ensures the necessary accuracy in practice, since usually B < 0.4. 

5. To check the legitimacy of the assumption of a negligibly small TT,c, made in solv- 
ing the problem (15), numerical solution was carried out using a second order accuracy 
finite-difference approximation in q, and a first order in r [9]. A comparison of the func- 
tion h(~) obtained from Eq. (19) with the numerical solution showed that the maximum 
deviation did not exceed 3%, and this deviation was mainly caused by error in the numerical 
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algorithm. An analysis of the temperature field Tc(~, ~) obtained in the numerical experiment 
shows that it is practically independent of �9 (in the variables D, ~, i.e., in a moving sys- 
tem of coordinates), which again confirms the correctness of the assumptions made. 

i/ Pc' Z o 
It is interesting that from (19) and (5) it follows that v=~.f ~ , and as r + + 0, 

the velocity of movement of the gas tends to infinity. From the physical point of view, 
this conclusion is not unexpected, since from the experiment, there is observed initially 
the so-called jet flow, with a high velocity. This is, however, short-lived. 

We note also that for very small B in Eq. (22), we may limit ourselves to taking 
the first term only, which, as it is not difficult to show, is an equivalent assumption to 
neglecting the term T~, c in the left part of the equation in (12). An analytic solution 
constructed in this way is bound up with the neglect of the contribution of the moving bound- 
ary in (15a), since for small values of B, the role of the second term on RHS of Eq. (15a) 
is negligible. For large B, this contribution may, however, amount to 5% or more. 

Therefore, an attempt to construct an analytic solution deriving directly from (12) may 

lead to appreciable error. 

6. We now return to the experimental results and to a comparison with the results of 
calculations. In Fig. 2 is shown the schematic of a test installation. The gas mixture of 
nitrogen and oxygen, of a given composition, from tank i entered the condensation pump 2 via 
the reservoir 3. The gas flow was regulated by valve 4 and measured by flowmeter 5 (type 
RS-3A or RM-GS-0.25 rotameter), and also by the pressure fall in tank i. The gas mixture 
condenses on cryopanel 6; the thickness of the cryoprecipitate layer is measured by the con- 
tact thickness gauge 7. Cooling of the cryopanel to 15-17 K was done by circulating gaseous 
helium. The gas pressure in the pump was measured with types 13VTZ-003 and VDO-I vacuum 
gauges, connected to tube 8. The temperatures of the cryopanel, the nitrogen screen and the 
gas in the pump were measured with copper-iron and copper-constantan thermocouples, with 

type F-30 voltmeter. 

In Fig. 3 are shown experimental and computed curves for different pressures of the gas 
mixture, consisting of 25% and 75% nitrogen. As seen from the diagram, the difference be- 
tween theory and experiment did not exceed 5%. This result confirms the assumption made in 
this work that under experimental conditions, the chief factor determining the mass transfer 
to the cryopanel is a transverse motion of the gas to the phase boundary interface. 

NOTATION 

T, temperature; p, pressure; v, gas velocity; h, cryoprecipitate thickness; ~, time; 
W, mass component; f, mass flow; p, density; c, thermal capacity; X, thermal conductivity; 
a~ temperature conductivity; r, heat of sublimation; D, diffusion coefficient; x, y, current 
coordinates; P, mathematical parameter; ~, dimensionless coordinate inside the condensate; 
$, integration variable; T~, T X, Ty, Tq, W T, Wy, derivatives with respect to coordinates and 
time. Abbreviations: b, phase interface boundary; =, distant from phase interface; cony, 
convective component; diff, diffusion component; c, condensate; g, gas; 0, initial value; 
p, cryopanel surface; i, 2, numbers of components. 
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